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Abstract
Anelastic softening related to the movement of twin boundaries is observed in improper
ferroelastic KMnF3 and KMn1−x Cax F3. Wall movement in KMnF3 shows a frequency
dependence which is described in terms of an extended Debye relaxation with an extension
exponent of 0.54. This exponent indicates a fairly narrow distribution of activation energies near
0.43 eV. Wall movements in Ca-doped samples are best described in terms of Vogel–Fulcher
(VF) relaxations with a VF energy of 0.23 eV. The activation energies are related to interaction
between F vacancies or interstitials and the moving domain walls; Ca doping appears to increase
the tendency to form glass-like states. No domain freezing occurs at temperatures above the
subsequent phase transition I 4/mcm–Pnma; the Pnma phase does not show any domain
movement and anelastic behaviour. Elastic precursor softening is observed above the transition
temperature between the cubic and the tetragonal phase. The softening can be described
empirically using a power law: [(T − To)/To]−K with values of the exponent K around 0.5.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ferroelastic and martensitic materials often show significant
elastic softening and anelastic behaviour when subjected
to external stresses [1–9]. Such anelasticity is related
to the movement of twin boundaries. Anelasticity is
related to the extension and retraction of individual needle
domains [4] for weak stress fields and the sideward movement
of twin boundaries is also observed for stronger stress
fields. Hindrance to this movement is given by pinning
centres [2–5, 8] and boundary conditions [10]. However, Lee
et al [11] have argued that intrinsic pinning via the Peierls
lattice effect is only physically possible if the thickness of
the twin wall is sufficiently small, i.e. narrow walls are more
likely to be pinned than diffuse walls. Narrow walls occur
in many metallic shape memory alloys while in ferroelastic
perovskites, as example, the wall thickness expands to several
nanometres. Such walls are less likely to be pinned by the
Peierls lattice effect. In the latter group of materials the pinning
can only occur via extrinsic defects, boundaries or interactions
with other twin walls, dislocations etc. Mobile defects can
be transported with the wall movement and only freeze out at

1 On leave to: Max Planck Institute for Mathematics in the Sciences/Leipzig,
Germany.

very low temperatures. Such effects are also important for the
investigation of the propagation and damping of seismic waves
where the amplitudes are extremely small (10−8 in the far field)
and the frequencies are low (below 1 Hz) [2–5].

Experimentally, pinning effects have been observed in
LaAlO3 [2–4] and Ca1−x Srx TiO3 [5]. In Ca1−xSrx TiO3 [5],
oxygen vacancies or clusters of such vacancies [11] pin
the domain wall at 423 K for 0.68 < x < 0.9. The
activation energy for the wall movement is 0.8 eV which is
characteristic for oxygen vacancies [5, 12]. In LaAlO3 the
freezing temperature is 423 K with an activation energy of
0.88 eV [2, 4]. No activated process was found in SrTiO3 [6]
and KMnF3 [7]. In these materials twin walls appear to
remain mobile to the lowest temperature measured. We have
to assume, therefore, that the defects either travel with the
moving domain wall or that the pinning force is weak enough
so that the wall movement is not impeded by defects at low
frequencies (between 0.2 and 32 Hz).

This study is, to our knowledge, the first to focus
on fluoroperovskites. There are two reasons for using a
perovskite based on fluorine octahedra rather than the more
common oxygen octahedra. First, it appears that in oxides
the pinning of domain walls is largely attributed to oxygen
vacancies [2, 4, 5, 12]. However, the internal wall structure

0953-8984/09/035901+07$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/3/035901
http://stacks.iop.org/JPhysCM/21/035901


J. Phys.: Condens. Matter 21 (2009) 035901 E K H Salje and H Zhang

in oxides can be complex with secondary order parameters
located inside the walls but not in the bulk [13, 14]. As an
example may serve CaTiO3 where twin walls contain electric
dipole moments while no such dipole moments exist in the
ferroelastic bulk [14]. Such local wall structures can give
rise to pinning mechanisms which go beyond the standard
pinning models [1, 11, 15]. The question arises whether F-
based perovskites with similar structural deformations in the
bulk show domain freezing related to such secondary order
parameters.

The second reason for choosing KMn1−x Cax F3 is to
test the validity of the results of Cao and Barsch [16] who
reported precursor softening in KMnF3 at temperatures above
the transition point to the paraelastic phase as measured by
ultrasonic high frequency experiments. These authors argued
convincingly that the tilt transformation in KMnF3 is not a
rigid body transition but that the anharmonicity of the structure
is related to the atomic Mn–F interaction while all other
interactions appear to be less important. The same line of
argument was used for SrTiO3 [17–20] where the anomaly
arises from the highly non-linear polarization of the oxygen
ions. Equivalently it was shown that the transition in KMnF3 is
due to the specific properties of the Mn–F interaction and not
due to the space filling effect of K. Precursor softening of the
elastic moduli C11, C12 and C44 was observed between To and
To + 150 K.

Similar softening (called a cusp-like anomaly by Cao
and Barsch [16]) has already been studied in oxide
perovskites [21–23] and other materials [24]. This softening
can be described empirically by a power law with an exponent
K (other symbols have been used previously. Here we follow
the notation of [24] in order to avoid confusion with the
critical exponent δ). We have compared our results in KMnF3

with those of Cao and Barsch [16] and find that in our low
frequency measurements (0.2–32 Hz) the anomaly is limited
to a much smaller temperature interval so that the conclusions
drawn previous cannot be universal and hence a structural
interpretation appears to be more difficult than previously
anticipated [16].

Finally we will show that no anelastic effect exists in the
Pnma phase so that we argue that no stress induced movement
of twin walls appears to happen in that phase [25, 26].

2. Phase transition in KMn1−xCaxF3

Pure KMnF3 undergoes several phase transitions at the
following temperatures: 186.5, 88 and 82 K [27]. The first
transition, which is slightly first order, occurs at around Tc1 =
186.5 K and corresponds to the softening of phonons having
the R25 symmetry. The high temperature cubic space group is
Pm3m which transforms to I 4/mcm with the tetragonal c-axis
developing around the [001] cubic axis. The second transition
at Tc2 = 88 K is from a tetragonal to an orthorhombic phase
(Pnma) although the details of the transition mechanism is not
clear. An alternative space group may be Cmcm which would
maintain the tilt system of the I 4/mcm phase. Finally, below
Tc3 = 82 K, a tetragonal (or monoclinic) phase develops [27].

For the Ca-doped samples, the temperatures of these three
structural phase transitions are enhanced when Mn2+ ions are
substituted by Ca2+ ions. The increase per % of Ca for the
three phase transitions are 5.8, 18, and 14 K, respectively [27].

KMnF3 becomes anti-ferromagnetic below the Néel
temperature TN = 88 K and transforms further to a canted
antiferromagnet at 82 K. According to various authors, an
additional structural phase transition may exist at 91 K. This
transition was reported to be either first order [28] or second
order [29]. Kapusta et al [30] claimed the 91 K transition to
be a tetragonal/monoclinic transition while Gibaud et al [27]
and Salazar et al [31] do not observe any anomaly at this
temperature. In our experiments we cannot reach temperature
below 100 K so that we can only investigate the phases I
4/mcm and, for Ca-doped samples, Pnma.

3. Experimental procedures

Samples of KMn1−xCax F3 were prepared at University du
Maine (Le Mans, France) using the Bridgman–Stockbarger
method. The chemical characteristics of the samples were
examined using an electron microprobe CAMECA SX50. The
pure KMnF3 sample did not show any trace of calcium. The
doped samples showed Ca concentration of 0.3 mol%, 1.7%
and 2.3%. The microanalysis experiments showed slight
inhomogeneities in the composition of the doped samples, for
example, the composition of the fourth sample is 2.30% ±
0.13%.

The samples for dynamical mechanical analysis (DMA)
experiments with size around 1 × 1 × 7 mm3 were cut using
a high-speed saw from the big single crystals. The three
edge directions of the DMA samples are all parallel to [100]
of the cubic phase. Mechanical properties were measured
using a Perkin–Elmer dynamical mechanical analyzer (DMA-
7e) operating in three-point bend geometry. The sample was
suspended on two knife edges, 5 mm apart. A force is applied
from above via a third knife edge located halfway between
the supporting knives. The total force is the sum of a static
component FS and a dynamic component with amplitude FD

and frequency f . The amplitude of deflection (uD) and phase
lag (φ) are measured with resolutions of �uD around 10 nm
and �φ = 0.1◦, respectively. The dynamic Young’s modulus
is

E = l3

4t3w

FD

uD
exp(iφ) (1)

while l, w and t are the distance between knife edges, the
width and the thickness of the sample, respectively. The
real (E ′ = |E | cos(φ)) and imaginary (E ′′ = |E | sin(φ))

parts of the dynamic modulus are referred to as the storage
and loss modulus, respectively. The ratio E ′′/E ′ = tan(φ)

is the mechanical loss (energy dissipated per cycle). DMA
experiments were performed with various frequencies and
FS = 110 mN, FD = 100 mN. The temperature was changed
between room temperature and 100 K with a heating/cooling

rate of
•

T = 2 K min−1. Precursor softening, was measured
using larger forces in order to reduce the experimental noise;
the deflection amplitude in the cubic phase was ca 1 μm.
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Figure 1. Storage modulus and mechanical loss of KMnF3. The
frequencies from bottom to top at 170 K for moduli and from left to
right for mechanical loss peaks are 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 8, 16,
32 Hz.

4. Results

The ferroelastic phase transition cubic–tetragonal is clearly
visible in all experiments by a drop of the storage modulus by
a factor of 3 or more. This clearly shows the effect of mobile
domain boundaries in the tetragonal phase. In no sample
did we observe strong domain boundary freezing at lower
temperatures (in contrast with the behaviour of LaAlO3 [4]).
Instead we find a massive increase of the elastic stiffness near
the phase transition tetragonal–orthorhombic. No indication
for any wall movement was found in the orthorhombic Pnma
phase. This behaviour is similar to Ca1−x Srx TiO3 where the
Pnma phase is also as stiff as the paraphase Pm3m [5, 25, 26].

In detail, we show in figure 1 the temperature dependence
of the storage modulus and mechanical loss of KMnF3. The
phase transition at 184 K appears as a large decrease of the
storage modulus on cooling. Twin domain walls form below
the transition and the domain wall can move in response to an
applied stress so the modulus rapidly decreases to a value about
one fourth of the cubic phase and remains almost constant
when temperature is lowered further. Below 184 K some
mechanical loss is observed, accompanied by a corresponding
small decrease of the storage modulus which can be seen in
the inserted figure of figure 1. The peak shifts to higher
temperature with increasing frequency, which demonstrates
that the relaxation process is thermally activated. We fit the
temperature evolution of the mechanical loss to an Arrhenius
expression τ = τ0 exp(Ea/kT ), where τ is the relaxation time,

Figure 2. Ln ( f ) versus 1/T for KMnF3.

τ0 is the relaxation time extrapolated to infinite temperature
and Ea is the activation energy. With ω = 2π f , the peak
position is given by ln(2π f τ0) + Ea/kT = 0. The ln( f )

versus 1/T curve shown in figure 2 gives Ea = 0.43 eV
and τ0 = 8 × 10−15 s. Debye relaxations usually do not
describe wall movements quantitatively so that either extended
Debye expressions or stochastic equations are used for the
analysis [8]. Here we use the generalized Debye equation

J (ω) = J1 − iJ2 = JU + �J

1 + i(ωτ)u
(2)

J1 = JU + �J

1 + (ωτ)2u
(3)

J2 = �J
(ωτ)u

1 + (ωτ)2u
(4)

where JU is the unrelaxed compliance (i.e. the instantaneous
elastic response of the lattice), �J is the anelastic contribution
to the compliance and u is the broadening exponent. The
mechanical loss are related to the compliance via

tan(φ) = J2

J1
. (5)

Combined with the relaxation time τ = τ0 exp(Ea/kT ),
the fitting of the experimental data of mechanical loss of pure
KMnF3 for f = 1 Hz with equations (2)–(5) as function of
temperature is shown in figure 3. This analysis allows for
a spread of the activation energy of 0.43 eV over a narrow
distribution [4] which is plausible for weakly heterogeneous
materials (u = 0.54, JU/�J = 0.77, τ0 = 7 × 10−15 s).

Figure 4 shows the temperature dependence of the storage
modulus and mechanical loss of KMn0.997Ca0.003F3. The
modulus drops at the temperature of the cubic–tetragonal phase
transition and a mechanical loss peak is observed below the
phase transition. The change of the modulus is too small to
be seen. Through the ln( f ) versus 1/T curve, we obtained
Ea = 0.68 eV and τ0 = 2 × 10−22 s. The value of τ0 is far too
low compared with the values characteristic for atomic hopping
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Figure 3. Mechanical loss of KMnF3 for f = 1 Hz as a function of
temperature and the fitted curve of the extended Debye model
(equations (2)–(5)).

Figure 4. Storage modulus and mechanical loss of
KMn0.997Ca0.003F3. The frequencies are 0.2, 0.4, 1, 2, 4, 8, 16, 32 Hz
and raise from bottom to top at 182 K for the moduli and from left to
right for the mechanical loss peaks.

pointing to a glass transition process [32]. Therefore we fit our
data with a Vogel–Fulcher relaxation τ = τ0 exp(Ea/k(T −
Tf)) with freezing temperature Tf = 70 K which results in
Ea = 0.23 eV, τ0 = 8 × 10−14 s (figure 5). The fit is not
quite accurate as the value of Tf is rather un-constrained. The
fitting of the mechanical loss peak with equations (2)–(5) and

Figure 5. Ln ( f ) versus 1/(T − 70) for KMn0.997Ca0.003F3.

Figure 6. Mechanical loss of KMn0.997Ca0.003F3 for f = 1 Hz as a
function of temperature and the fitting line of the extended Debye
model (equations (2)–(5)).

Table 1. Parameters of the extended Debye model for
KMn0.997Ca0.003F3.

Tf (K) Ea (eV) τ0 (s) JU/�J u

70 0.23 3 × 10−14 3.9 0.31

Vogel–Fulcher relaxation law is shown in figure 6 with
parameters listed in table 1.

The storage moduli for KMn0.983Ca0.017F3 and KMn0.977

Ca0.023F3 are shown in figure 7. The softening of the
modulus at the cubic to tetragonal phase transition is similar
as in KMnF3 and KMn0.997Ca0.003F3. A massive increase
of the elastic stiffness is observed near the phase transition
tetragonal–orthorhombic. The transition temperatures agree
well with those reported by Gibaud et al [27]. They
also reported another phase transition below the tetragonal–
orthorhombic transition although we observed no additional
anomaly in KMn0.983Ca0.017F3 and KMn0.977Ca0.023F3.

We now turn to the measurement of the precursor soft-
ening above the temperature of the cubic/tetragonal transition.
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Table 2. Parameters of the power law fitting for the relative softening above the phase transition Pm3m–I4/mcm.

Mo or Co To (K) K

KMnF3 0.022 (±0.001) 184.3 (±0.3) 0.4 (±0.12)
KMn0.997Ca0.003F3 0.015 (±0.003) 185.3 (±0.2) 0.4 (±0.2)
KMn0.983Ca0.017F3 0.000 93 (±0.000 09) 197.3 (±0.3) 0.8 (±0.3)
KMn0.977Ca0.023F3 0.0052 (±0.0013) 201.5 (±0.5) 0.75 (±0.15)
C S

11
a 0.043 (±0.002) 184.5 0.43 (±0.03)

C S
44

a 0.000 83 (±0.000 05) 184.5 1.02 (±0.03)
1/2(C S

11 − C S
12)

a 0.063 (±0.002) 184.5 0.50 (±0.03)
1/2(C S

11 + C S
12) + C S

44
a 0.016 (±0.001) 184.5 0.49 (±0.04)

a Calculated from the data in [16] as shown in figure 8(b).

Figure 7. Storage moduli of KMn0.983Ca0.017F3 and
KMn0.977Ca0.023F3 for f = 1 Hz.

We analysed our own data and the data published in [16]. The
value of �M is calculated as the difference between the ex-
perimental data and the baseline extrapolated from the high
temperature data (see appendix A.17 in [24]). This value is
then normalized with respect to the value at 250 K to obtain
the relative softening of the moduli. Figure 8(a) shows the
temperature dependence of the relative softening of the stor-
age moduli above the tetragonal–cubic phase transition with
f = 8 Hz. For clarity the various curves are stacked against
each other, the high temperature limit is always zero. Soften-
ing was clearly observed within 10 K of To for all samples.
A similar analysis of the high frequency elastic constants pub-
lished by Cao and Barsch [16] is shown in figure 8(b). The
temperature interval over which softening is observed is much
greater for the high frequency data than for our low frequency
observations.

The softening can be described empirically by a power
law [(T − To)/To]−K . The resulting fits to �M/M250 K =
−Mo[(T − To)/To]−K or �C/C250 K = −Co[(T −
To)/To]−K are shown in figure 8; the parameters are
listed in table 2. While the exponent is reasonably well
constrained by the fit, the amplitudes Mo and Co are less
well determined and depend on the details of the experimental
setting.

(a)

(b)

Figure 8. The relative softening of the storage modulus
(�M/M250 K), elastic constants (�C/C250 K) and the fit to a power
law. Elastic constants data for the KMnF3 are extracted from data of
Cao and Barsch [16]. The curves in (a) and (b) are shifted by 0.05 in
the y-axis for clarity.

5. Discussion

The observed activation energy for the domain movement in
KMnF3 is 0.43 eV. This value is consistent with the activation
energy of migration of the F vacancy in KMnF3 [33, 34].
This indicates the relaxation process is due to the hopping
of the F vacancy. No strong freezing of domain boundary
movement was observed (no strong increase of the storage
modulus under cooling in the tetragonal phase). The low value
of the damping is seen as an indication that only few walls are

5



J. Phys.: Condens. Matter 21 (2009) 035901 E K H Salje and H Zhang

pinned even at our low frequency excitations and at relatively
low temperatures. We may speculate that the low number of
pinned domain walls may be due to the low concentration of
the F vacancy and/or the fact that coupling between a domain
wall and the F vacancy is not strong enough to pin the domain
wall. A similar situation is encountered in SrTiO3 where
no domain wall freezing was observed down to the lowest
temperature measured [6].

For KMn0.997Ca0.003F3, the activation energy is 0.23 eV.
The activation energy of the F interstitials in KMnF3 simulated
is 0.12 eV by Kilner [33] and 0.27 eV by Becher et al [34].
Our experimental value is consistent with the latter which may
indicate that the related defects are F interstitials. As the ionic
radius of the Ca2+ ions is larger than the Mn2+, the Ca2+
ion forces the fluorine off its symmetry positions which may
stabilize the (100) dumbbell fluorine interstitial.

It was reported that for KMn0.997Ca0.003F3, domain wall
freezing occurs at 107 K with activation energy of 0.15 eV [7],
which may indicate that the related point defects are also
fluorine interstitials. In our results, the hopping of the fluorine
interstitial leads to a relaxation peak but cannot pin the domain
wall. It is possible that the reported freezing is due to the Ca-
(dumbbell fluorine interstitial) pairs. The fluorine dumbbell
interstitial can rearrange its orientation around the Ca. When
the rearrangement is frozen at low temperature, the domain
wall is pinned at the same time. Schranz et al [7] reported
that the freezing temperature shifts to higher temperature
for higher Ca concentration which may also supports our
hypothesis. Pinning in all other samples was too weak to allow
a quantitative analysis.

Precursor softening exists in all samples. The exponent
K , except for a higher value for C S

44, varies between values
of 0.4 (±0.2) and 0.8 (±0.3) with an overall mean value
of 0.5. The lower values were found for KMnF3, while
K appears to increase with increasing Ca content. These
values can be compared with the predictions of Carpenter and
Salje [24] for fluctuation softening for D-dimensional phonon
branches in the paraelastic phase (A35-A37 in [24]). The
predicted exponent varies between 0.5 for three-dimensional
softening, via 1 in the two-dimensional case, to 3/2 in the
one-dimensional scenario. Our data, within experimental
uncertainty, are consistent with a three-dimensional softening
of phonon branches in the Pm3m phase and clearly exclude
lower-dimensional fluctuations.

In the extensive exploration of the high frequency
ultrasonic response of KMnF3 by Holt and Fossheim [35]
similar exponents were found. The exponent 0.4 was reported
for a limited temperature range while an exponent closer to 0.5
appeared possible over a larger temperature interval. Holt and
Fossheim understood their experimental observations in terms
of a 3D Heisenberg model based on the damping of the wave
propagation at high frequencies. They referred explicitly to the
behaviour of SrTiO3 where Höchli and Bruce [23] found values
of K ranging from 1.3 to 1.7. Höchli and Bruce stated that
their data were quite inconsistent with the intrinsic behaviour
of a Heisenberg or Ising model so that the influence of defects
was evoked. Their values are much greater than in KMnF3

so that it may be useful to consider why these two phase

transitions, which appear to follow the same structural path,
have such different exponents. Here we argue that the extend
of the precursor softening in KMnF3 and related compounds is
strongly frequency dependent while the exponent K remains
invariant. This could indicate that the coupling between the
elastic response and the fluctuations are frequency dependent
but that the dimensionality of the fluctuations is always 3. This
analysis agrees with other interpretation of data within mean
field behaviour of both materials [36–38]. It is also given
support by the observation of short range order by hard mode
spectroscopy by Bruce et al [39] which can be understood as a
manifestation of the local structural deformation of the Pm3m
structure [40–43].
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